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How water droplets evaporate on a superhydrophobic substrate
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Evaporation of water droplets on a superhydrophobic substrate, on which the contact line is pinned, is
investigated. While previous studies focused mainly on droplets with contact angles smaller than 90◦, here we
analyze almost the full range of possible contact angles (10◦–150◦). The greater contact angles and pinned contact
lines can be achieved by use of superhydrophobic carbon nanofiber substrates. The time evolutions of the contact
angle and the droplet mass are examined. The experimental data are in good quantitative agreement with the
model presented by Popov [Phys. Rev. E 71, 036313 (2005)], demonstrating that the evaporation process is
quasistatic, diffusion-driven, and that thermal effects play no role. Furthermore, we show that the experimental
data for the evolution of both the contact angle and the droplet mass can be collapsed onto one respective universal
curve for all droplet sizes and initial contact angles.
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I. INTRODUCTION

Evaporation of sessile droplets with small contact angles
(< 90◦) has been studied extensively. Several evaporation
modes have been explored: the constant contact-angle mode
[1,2], in which the contact area of the droplet on the substrate
vanishes; the constant contact-area mode [1,3–6], in which the
contact angle vanishes; and the combination of both modes
[1,7,8]. A thorough understanding of droplet evaporation is of
vital importance for examining the drying rate [1,3,6,7,9–11],
the flow patterns observed inside drying drops [12–14], and
the residual deposits [5,15,16].

In early modeling of evaporating drops [3,4,7,17], the
evaporative flux was assumed to be uniform in the radial
direction, as it is for evaporation from a sphere. However,
in his study of contact-line deposits, Deegan [5] argued that
the evaporative flux from a sessile drop with a spherical cap
shape is generally not uniform, but diverges near the edge of
the drop for contact angles smaller than 90◦. Hu and Larson [6]
later used a numerical model to find an expression for the rate
of mass loss from a drop in terms of its contact angle, taking
this divergence into account. Their model applies to contact
angles smaller than 90◦.

For larger contact angles, few theoretical descriptions exist
for diffusion around a spherical-cap droplet. In [1], the rate of
mass loss was expressed in terms of a series solution, which can
be approximated in both the small and the large contact-angle
regimes. Popov [16] described an analytical solution for the
rate of mass loss in terms of the contact angle, which applies
to the full range of contact angles. However, this model has
never been validated against experimental data in the large
contact-angle regime.

Apart from the diffusive spreading of water vapor described
by the models mentioned earlier, there are other factors that
may influence the evaporation rate (see, e.g., [18] for an
overview). First, the evaporation models discussed assume
a stationary contact line. When the contact line is moving,
dynamic effects may complicate the problem for both the vapor
concentration outside and the viscous flow inside the drop [8].

Secondly, evaporative cooling of the drop can reduce the
evaporation rate [9–11]. The resulting temperature gradients
on the drop surface can induce a Marangoni flow [13,14], and
can give rise to a Marangoni-Bénard instability [19]. Finally,
in addition to the diffusion of water vapor, free convective
transport may play a role, increasing the evaporation rate
[11,20]. However, the influence of these factors on the
evaporation rate has yet to be confirmed experimentally.

In this paper, we describe our investigation into the
evaporation of water droplets on carbon nanofiber (CNF)
substrates; see Fig. 1. These substrates belong to the family
of ordered carbonaceous structures: the graphitic planes are
oriented under an angle to the central axis. CNF substrates can
exhibit superhydrophobicity [21]. The samples used here have
contact angles with water ranging from 150◦ up to 170◦. On
superhydrophobic substrates, all evaporation modes can occur.
The constant contact-angle mode is mostly observed when the
contact-angle hysteresis is low; the constant contact-area mode
is mostly observed when the hysteresis is high [22,23]. On our
CNF substrates, the contact line remains pinned throughout
almost the entire experiment, hence evaporation takes place in
the constant contact-area mode. In contrast, superhydrophobic
substrates based on micropillar arrays display contact-line
jumps during evaporation [24,25]. Because we consider pinned
contact lines, we can study evaporating drops in almost
the full range of possible contact angles (0◦–150◦). The
rate of mass loss and contact-angle evolution over time are
obtained experimentally for various drop sizes. We show
that the evaporation dynamics is described accurately by
the diffusion-based model of Popov [16], suggesting that
thermal and free-convection effects are unimportant in our
experiment. In addition, we show that the evolutions of the
droplet mass and contact angle can be described by a universal
relation, that is, independent of the drop size and initial contact
angle.

In Sec. II, the experimental setup and preparation of the
CNF substrates are described. The experimental results are
discussed in Sec. III. The theoretical model for droplet evapo-
ration adopted from Popov [16] is briefly described in Sec. IV.
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FIG. 1. Side view (a) and top view (b) of a 8 μL droplet on a
CNF substrate in the initial moments. Parts (c) and (d) show the same
droplet in the last moments before being completely evaporated. Note
that the contact line remains perfectly circular and completely pinned
until almost the end of the process.

Finally, in Sec. V, it is shown that the theoretical results
are in good quantitative agreement with the experimental
data.

II. EXPERIMENTAL METHODS

A. Preparation of the CNF substrates

The droplets were left evaporating in an empty room1 at
a constant temperature of 23 ◦C and a humidity of 30% over
CNF substrates; see Fig. 2. CNFs were grown on oxidized
silicon substrates using a Ni thin film as a catalyst. A
250-nm-thick SiO2 layer was grown on p-type Si(001) via
wet oxidation. On top of this oxide layer, 10 nm Ta was
deposited, followed by a 25-nm-thick Ni layer. The samples
were pretreated prior to the CNF synthesis in a quartz reactor.
The substrates were placed on a flat quartz boat positioned
centrally inside a quartz reactor, and the temperature was
increased at a rate of 5 ◦C min−1 from room temperature
up to 500 ◦C in a N2 (99.999%, Indugas) atmosphere. During
this pretreatment step, the samples were subjected to 20 vol.%
of H2 in N2 at a total flow rate of 50 mL min−1 at 500 ◦C
for 2 h; then the temperature was increased up to 635 ◦C. At
635 ◦C, 25 vol.% ethylene (99.95% Praxair) in N2 was passed
through the reactor for 1 h, while 6.25 vol.% H2 (99.999%,
Indugas) was added for the first minutes of the reaction time.
After the reaction time, the substrates were cooled down
in N2 at a rate of 10 ◦C min−1 until room temperature
was reached. The CNF samples were used without further
functionalization.

1No human heat sources were present.

1 m 1 m

FIG. 2. Scanning electron microscopy (SEM) images of the CNFs
used as superhydrophobic substrates. Tilted side view (left) and
augmented top view (right).

B. Measurement of droplet evaporation

To analyze the evaporation of droplets on CNF substrates,
the droplets were observed during their total evaporation time
and photographed at 1-s time intervals. Two synchronized
cameras (Lumenera Lm135, 1392 × 1040 pixels) were used
for this purpose, one taking side-view images and another
taking top-view images; see Fig. 1. Side-view images allowed
us to compute volume (mass), contact angle, area, droplet
radius, mass loss, and spreading velocity at every instant.
The image analysis was performed using a custom-made
MATLAB code in which the detected droplet profile was fitted
to an ellipse. The droplets considered in this study are much
smaller than the capillary length (which is 2.7 mm for a water
droplet [18]), hence we can neglect flattening of the drops
by gravity. Nevertheless, we used an elliptical rather than a
spherical fitting. The elliptical fit allowed us to use three fitting
parameters (two semiaxes and the angle of the ellipse with the
horizontal plane) instead of only one (droplet radius), thereby
increasing the precision of the determination of the volume and
contact angle of the droplets. The ellipticity of the droplets,
defined as the ratio between both semiaxes, was always
below 7%.

The contact line of the droplets was detected automatically;
the contact angles were then measured by finding the tangent
of the ellipse at the contact line. The error in the determination
of the contact angle, based on the quality of the fits, was found
to be below 1%. The volume of the droplet was obtained by
calculating the ellipse area above the contact line and assuming
rotational symmetry with respect to the vertical axis, with an
error below 10%. The rate of mass loss was computed applying
a fourth-order finite differentiation of the ellipse volume over
time.

Top-view images were used to obtain qualitative informa-
tion on the stability and circular symmetry of the contact line;
using this information, we rejected those few experiments in
which the contact line had a highly irregular shape.

Due to the chaotic three-dimensional distribution of the
nanofibers, the way the liquid wets the structure is more
complex than for ordered superhydrophobic microstructures
[24,25], for which two wetting states can be defined: the
Cassie-Baxter state, in which the contact of the liquid with
the substrate is minimum, and the Wenzel state, in which
the contact is maximum. In our case, it is assumed that the
liquid remains in a mixed state and that the transitions from
one intermediate state to another are sufficiently smooth to be
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undetectable. Therefore, we will not use this terminology in
this paper.

III. EXPERIMENTAL RESULTS

The droplet volume, contact angle, and radius were de-
termined from the experimental data with a time resolution
of 1 s. The droplet volume versus time plot clearly shows
nonlinear behavior; see Fig. 3(a). Hence, a model based on the
small contact-angle approximation, which predicts the droplet
volume to decrease linearly in time [5,6], will not suffice to
describe the evolution of the droplet volume over time.From
the droplet volume measurements, the rate of mass loss of the
droplet dM/dt was derived, as described in Sec. II. Figure 4(a)
shows that dM/dt decreases with decreasing contact angle,
hence it also decreases in time. Again, nonlinear behavior is
observed, with a steep decline for larger contact angles, but
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FIG. 3. (Color online) (a) Droplet volume vs time for initial
droplet volumes of 1.6 μL (blue filled circles), 2.1 μL (red squares),
2.9 μL (green diamonds), 4.6 μL (magenta upward triangles),
6.2 μL (cyan downward triangles), and 6.9 μL (brown unfilled
circles). The error bars are deduced from the elliptical fit to the
data. The measurements were performed with a time resolution of
1 s, but for clarity we show the data with a 30-s resolution. (b) The
dimensionless droplet mass plotted against the dimensionless time.
The black solid line represents the theoretical prediction according to
the Popov model. The experimental data are scaled according to (6).
The time is set to 0 at the end of the droplet life (see text).
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FIG. 4. (Color online) (a) The rate of mass loss of the droplet
(derived from the measured droplet volume) vs the contact angle.
Colors and markers are as in Fig. 3. (b) The same data, but now
scaled according to (6). Predictions from the Popov model (black
solid line) and the model of Hu and Larson (purple dashed line) are
shown.

this levels off to a constant rate of mass loss for contact angles
smaller than 70◦.

During the evaporation, the contact angle of the droplets
decreases over time from about 150◦ to 0◦, as shown in
Fig. 5(a). Initially, the contact angle decreases slowly over
time. This is followed by a more rapid, linear decrease
over time when the contact angle becomes smaller than
approximately 70◦. The initial contact angles of the droplets
differ somewhat owing to irregularities in the substrate. For
comparison, not only the experimental data but also the
predictions based on the Popov model are shown in Fig. 5(a).
A more detailed explanation of this model is given in Sec. IV.

One advantage of the CNF substrates is that the contact lines
of the droplets remain pinned throughout almost the entire
experiment. Therefore, droplet evaporation in the constant
contact-area mode can be studied, in the absence of any
contact-line dynamics. Similar behavior of the contact angle
in the pinned situation has been reported for natural lotus
leaves [23], synthetic superhydrophobic surfaces with high
contact-angle hysteresis [22], and aligned carbon nanotube
(CNT) samples [26]. Figure 6 shows that depinning only
occurs during the final moments of the droplet’s life. In
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FIG. 5. (Color online) (a) The evolution of the contact angle
over time. The experimental data (•) can be described very well
by the theoretical model of Popov (—) by adjusting the drop radius
according to its experimental value (see Sec. V). The error in the
experimental data is not shown, since it is below 1%. (b) The same
data, but with the time scaled according to (6), and set to 0 at the
end of the droplet life (see text). The black solid line represents
the theoretical prediction according to the Popov model. Colors and
markers are as in Fig. 3.
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FIG. 6. (Color online) The droplet radius vs time. Significant
depinning of the contact line is observed during the final 4% of the
droplet lifetime. Data are shown with 15-s time resolution. During
the depinning, a resolution of 5 s is used. Colors and markers are as
in Fig. 3.

the depinning phase, the contact angle is typically smaller
than 40◦. Once the droplet starts to depin, the measurement
error shoots up. This is because the contact line does not
depin homogeneously, and it is therefore no longer exactly
circular.

IV. THEORY OF DROPLET EVAPORATION

To describe theoretically the measured time evolution of
a droplet’s contact angle and mass, we need to know the
evaporative flux from the droplet surface. This flux depends on
the rate-limiting step in the vapor transport. We assume that
vapor transport by free convection, induced by the density
difference between dry and humid air [20], is negligible
compared to diffusive transport. The influence of evaporative
cooling of the droplet on the evaporation rate [11] is also
neglected. Hence, the vapor transport occurs mainly by diffu-
sive spreading of the water vapor in air, and is characterized
by diffusion time td = R2/D, with R the droplet radius in
the plane of the substrate and D the diffusion coefficient.
The diffusion time for water vapor in air is of the order of
10−2 s. The evaporation occurs in a quasisteady fashion: the
time scale for diffusion is much smaller than the typical droplet
evaporation time te. As will become clear from the dimensional
analysis presented in (6), te = ρ/(cs − c∞)td . In essence,
te can be estimated by comparing the initial droplet mass,
proportional to the droplet density ρ, to the rate of mass loss,
proportional to cs − c∞, the vapor concentration difference
between the drop surface and the surroundings. Here, te/td =
ρ/(cs − c∞) is of the order of 105. We do not take into
account the Kelvin correction to the vapor pressure because
this effect is negligible for droplets of the size considered
here.

To determine the diffusive outflux from the drop surface,
the vapor concentration field around the droplet has to be
calculated. We follow the approach taken by Popov [16].
For completeness, we briefly formulate the problem in the
following paragraph.

A cylindrical coordinate system (r,z,φ) is adopted, with
r being the radial coordinate, z the direction normal to the
substrate, and φ the circumferential coordinate. The origin
of this system is chosen such that z = 0 corresponds to the
substrate and r = 0 to the center of the droplet. In this case,
the problem is axisymmetric, that is, φ-independent. In the
quasisteady, diffusion-limited case, the concentration field
c(r,z) around the droplet is given by

∇2c = 0. (1)

The boundary conditions imposed along the spherical-cap-
shaped droplet with arbitrary contact angle θ are (i) c = cs ,
the saturated vapor concentration, along the droplet surface;
(ii) c = c∞, the ambient vapor concentration, far away from the
drop; and (iii) the substrate is impermeable, hence ∂c/∂z = 0
along the substrate. The diffusive flux is given by J = −D∇c.
In our experiments, the ambient temperature was 23◦C and
the humidity H = 0.3. At this temperature, D = 24.6 ×
10−6 m2/s, ρ = 997.6 kg/m3, and cs = 2.08 × 10−2 kg/m3

(obtained from ( [27], pp. 6–1, 6–191) by linear interpolation);
furthermore, c∞ = Hcs .
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In the limit of small contact angles, simplified solutions
to (1) subject to the boundary conditions (i)–(iii) can be
used, as presented by Deegan [5] and Hu and Larson [6].
In our case, a more advanced model is needed because
we consider droplets evaporating on a superhydrophobic
substrate, with initial contact angles of approximately 150◦.
The analytical solution to the equivalent problem of finding
the electric potential around a charged lens-shaped conductor
is described in [28]. Popov [16] used this result to determine
the rate of mass loss from a droplet of arbitrary contact
angle:

dM

dt
= −

∫ R

0
J (r)

√
1 + (∂rh)22πrdr

= −πRD(cs − c∞)f (θ ), (2)

with M the droplet mass, J the diffusive outflux from the
droplet surface, h(r,t) the droplet height, t the time, and

f (θ ) = sin θ

1 + cos θ
+ 4

∫ ∞

0

1 + cosh 2θτ

sinh 2πτ
tanh[(π − θ )τ ]dτ.

(3)

The droplet mass can be expressed in terms of θ by the
geometric relation

M(θ ) = ρπR3 cos3 θ − 3 cos θ + 2

3 sin3 θ
, (4)

which yields an ordinary differential equation for θ as a
function of t ,

dθ

dt
= −D(cs − c∞)

ρR2
(1 + cos θ )2f (θ ). (5)

Numerical integration then gives θ as a function of t . Once θ

is known, M(θ ) and dM/dt can be derived.
In Figs. 3(a)–5(a), we showed the evolution of the droplet

mass and contact angle in time for various drop sizes.
Based on the theory just described, one would expect a
universal behavior that is independent of the drop size
and the other problem parameters cs , H , ρ, and D. To
demonstrate this, we introduce the nondimensional mass and
time as

M̂ = M

ρR3
, t̂ = cs − c∞

ρ

t

R2/D
. (6)

By substituting (6) into (2)–(5), we obtain

dM̂

dt̂
= −πf (θ ), (7)

M̂ = π
cos3 θ − 3 cos θ + 2

3 sin3 θ
, (8)

dθ

dt̂
= −(1 + cos θ )2f (θ ). (9)

The relations (7)–(9) no longer depend on the size of the
droplets, but only on the contact angle. This implies that
when we rescale the experimental data according to (6),

they should all collapse onto the theoretical curves described
by (7)–(9).

V. COMPARISON BETWEEN THEORY
AND EXPERIMENT

In Sec. IV, we explained that it should be possible to
collapse the experimental data for all droplet sizes measured
onto a single theoretical curve. To test this, we have to scale the
experimental data according to (6). As a characteristic length
scale, we would like to use the droplet radius. However, during
the final moments of the droplet’s lifetime, the droplet radius is
a time-dependent quantity. Therefore, we discarded all data in
which the droplet radius was changing significantly (>10%)
in the results that follow, and we used the initial droplet radius
for scaling.

The most direct prediction from the Popov model, which in-
volves no time integration, is the dependence of the rate of mass
loss on the contact angle (7). Indeed, the scaled experimental
data collapse onto a single curve, which is in excellent agree-
ment with the theoretical prediction (7), as shown in Fig. 4(b).
For comparison, the result obtained from applying the model
of Hu and Larson [6] is also shown. Their approximation
works well up to θ = 90◦, but for larger contact angles Popov’s
fully analytical model is required to adequately describe the
data.

Figure 5(b) shows that the experimental data for the
contact angle versus (dimensionless) time follow a universal
theoretical curve for all droplet sizes measured. The total time
it takes a droplet to evaporate depends on its initial contact
angle, as explained in Sec. IV. Since the initial contact angles
vary somewhat, the droplet lifetimes differ. However, the
experimental time is not an absolute measure, and we therefore
have the freedom to set t = 0 at whichever contact angle we
want. As the reference point, we chose t = 0 at the end of
the evaporation process, which is characterized by θ = 0. This
point is found by linear extrapolation from the last data points
measured to θ = 0.

Once the contact angle in time is known, we can apply
relation (8) to derive the droplet mass theoretically. Ex-
perimentally, the droplet mass is obtained independently of
the contact angle. Therefore, the comparison between the
theoretical predictions and the experimental data for the
droplet mass, as in Fig. 3(b), provides a second validation of
the model.

In the results just described, we used the experimental data
as long as the contact line remained pinned and hence the
droplet radius remained constant. In Fig. 6, we showed that
depinning occurs during the final moments of the droplet’s
lifetime. To construct the theoretical curves in Fig. 5(a), this
radius change has been taken into account. Time integration
was performed backward in time, starting from the smallest
contact angle measured. The agreement between the model
results and the experimental data is surprisingly good, even in
the regime where the droplet radius is changing significantly.
Although the droplet radius decreases rapidly, the time scale
over which the radius shrinks is still large—in the order
of 100 s—compared to diffusion time (10−2 s). There-
fore, contact-line dynamics is still of negligible influence,
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and the quasisteady evaporation model can indeed be
applied [8,18].

VI. CONCLUSION

Evaporation of water droplets on superhydrophobic CNF
substrates is studied. These substrates allowed us to measure
the evolution of the droplet mass and contact angle over time,
while the contact line remained pinned throughout almost the
entire experiment. The initial contact angle was as high as
150◦, and since it decreases to 0◦ during evaporation, a very
large range of contact angles could be studied. Therefore, CNF
substrates are a very useful tool to study droplet evaporation
in the absence of contact-line dynamics. In our theoretical
analysis, we deduced universal relations for the time evolutions
of the droplet mass and contact angle. This universal scaling
behavior is confirmed by our experimental results. Since the
experimental data covered almost the entire range of possible
contact angles, we have been able to validate the diffusion-
based analytical evaporation model presented by Popov [16].
The agreement of our experimental data with this theoretical

model—that does not contain any adjustable parameters—is
excellent. Therefore, we conclude that in our experiments the
evaporation is quasistatic and diffusion-driven, and thermal
effects play no role.

Even during the brief depinning phase, the quasisteady
model predicted the experimental data surprisingly well.
Hence, a pinned contact line is not a stringent requirement
for the applicability of the quasisteady evaporation model,
provided that the radius change takes place on a longer time
scale than the diffusion. In contrast, for droplets evaporating
on complete wetting substrates, a quasistatic droplet profile
can no longer be assumed and viscous effects influence the
evolution of the contact angle over time [8,29,30]. It would
be interesting to address intermediate cases, in which there
is some contact-line motion, so as to establish the range of
applicability of the quasisteady evaporation model.
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